Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res Commun ; 3(12): 2623-2639, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38051103

RESUMO

Currently, there are no clinically approved drugs that directly thwart mutant KRAS G12D, a major driver of human cancer. Here, we report on the discovery of a small molecule, KRB-456, that binds KRAS G12D and inhibits the growth of pancreatic cancer patient-derived tumors. Protein nuclear magnetic resonance studies revealed that KRB-456 binds the GDP-bound and GCP-bound conformation of KRAS G12D by forming interactions with a dynamic allosteric binding pocket within the switch-I/II region. Isothermal titration calorimetry demonstrated that KRB-456 binds potently to KRAS G12D with 1.5-, 2-, and 6-fold higher affinity than to KRAS G12V, KRAS wild-type, and KRAS G12C, respectively. KRB-456 potently inhibits the binding of KRAS G12D to the RAS-binding domain (RBD) of RAF1 as demonstrated by GST-RBD pulldown and AlphaScreen assays. Treatment of KRAS G12D-harboring human pancreatic cancer cells with KRB-456 suppresses the cellular levels of KRAS bound to GTP and inhibits the binding of KRAS to RAF1. Importantly, KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer whose tumors harbor KRAS G12D and KRAS G12V and who relapsed after chemotherapy and radiotherapy. These results warrant further development of KRB-456 for pancreatic cancer. SIGNIFICANCE: There are no clinically approved drugs directly abrogating mutant KRAS G12D. Here, we discovered a small molecule, KRB-456, that binds a dynamic allosteric binding pocket within the switch-I/II region of KRAS G12D. KRB-456 inhibits P-MEK, P-AKT, and P-S6 levels in vivo and inhibits the growth of subcutaneous and orthotopic xenografts derived from patients with pancreatic cancer. This discovery warrants further advanced preclinical and clinical studies in pancreatic cancer.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Linhagem Celular Tumoral , Neoplasias Pancreáticas/tratamento farmacológico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo
2.
Clin Cancer Res ; 27(14): 4012-4024, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33879459

RESUMO

PURPOSE: Among human cancers that harbor mutant (mt) KRas, some, but not all, are dependent on mt KRas. However, little is known about what drives KRas dependency. EXPERIMENTAL DESIGN: Global phosphoproteomics, screening of a chemical library of FDA drugs, and genome-wide CRISPR/Cas9 viability database analysis were used to identify vulnerabilities of KRas dependency. RESULTS: Global phosphoproteomics revealed that KRas dependency is driven by a cyclin-dependent kinase (CDK) network. CRISPR/Cas9 viability database analysis revealed that, in mt KRas-driven pancreatic cancer cells, knocking out the cell-cycle regulators CDK1 or CDK2 or the transcriptional regulators CDK7 or CDK9 was as effective as knocking out KRas. Furthermore, screening of a library of FDA drugs identified AT7519, a CDK1, 2, 7, and 9 inhibitor, as a potent inducer of apoptosis in mt KRas-dependent, but not in mt KRas-independent, human cancer cells. In vivo AT7519 inhibited the phosphorylation of CDK1, 2, 7, and 9 substrates and suppressed growth of xenografts from 5 patients with pancreatic cancer. AT7519 also abrogated mt KRas and mt p53 primary and metastatic pancreatic cancer in three-dimensional (3D) organoids from 2 patients, 3D cocultures from 8 patients, and mouse 3D organoids from pancreatic intraepithelial neoplasia, primary, and metastatic tumors. CONCLUSIONS: A link between CDK hyperactivation and mt KRas dependency was uncovered and pharmacologically exploited to abrogate mt KRas-driven pancreatic cancer in highly relevant models, warranting clinical investigations of AT7519 in patients with pancreatic cancer.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , Neoplasias Pancreáticas/etiologia , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Animais , Quinases Ciclina-Dependentes/metabolismo , Humanos , Camundongos , Fosforilação , Proteoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...